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Wavelet Analysis of Backscattering Data
from an Open-Ended Waveguide Cavity
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Abstract— The wavelet analysis technique is applied to an-
alyze the electromagnetic backscattering data from an open-
ended waveguide cavity. Compared to the conventional short-
time Fourier transform, the wavelet transform results in a better
representation of the scattering features in the time-frequency
plane, due to its multiresolution property.

I. INTRODUCTION

HE electromagnetic energy backscattered from an un-
known target can provide information useful for classify-
ing and identifying the target. This is commonly accomplished
by interpreting the radar echo in either the time or the
frequency domain. For target characteristics which are not im-
mediately apparent in either the time or the frequency domain,
the joint time-frequency representation of the radar echo can
often provide more insight into the scattering mechanisms and,
when properly interpreted, can lead to successful identification
of the target. In a recent paper by Moghaddar and Walton [1],
the joint time-frequency analysis of an open-ended waveguide
cavity was carried out. In that work, both the short-time
Fourier transform (STFT) and the Wigner—Ville distribution
were applied to the broad-band backscattering data from a
dispersive cavity structure to arrive at the time-frequency
representation. Good insights on the scattering mechanisms
were gained from the results. However, the STFT is limited by
its fixed resolution in both the time and the frequency domain.
The Wigner—Ville distribution, although providing good local-
ization of scattering mechanisms, introduces additional cross
terms which leads to “ghosts” in the time-frequency plane.
The theory of wavelets is currently attracting a great deal of
attention in many disciplines of applied science [2]-[5]. In this
letter, the wavelet transform is applied to the backscattering
data from an open-ended waveguide cavity in order to derive
the time-frequency representation of the signal. Contrary to
the conventional STFT that has fixed resolution in both time
and frequency, the wavelet transform, when properly defined,
can provide variable resolution in time and multiresolution in
frequency. Since the early-time radar echo from finite objects
usually consists of sharp peaks [6], very fine time resolution
is needed to resolve the various scattering centers. On the
other hand, since the late-time arrivals are characterized by
resonant ringing, good frequency resolution (or coarse time
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resolution) is needed for isolating the target resonances. In
the intermediate region, dispersive phenomena require good
resolution in both time and frequency. The multiple resolution
property of the wavelet transform is ideally suited for this task.
Consequently, the wavelet representation can provide a better
time-frequency characterization of the backscattering data.

II. SHORT-TIME FOURIER TRANSFORM
AND WAVELET TRANSFORM

The conventional STFT of a time signal f{t) is defined as
(31, [4):

S(r, Q) = /f(t)g(t —7)e Iy, (1a)

It is essentially the Fourier transform operation with the
addition of a time window function g¢(¢). The translation of
the window as a function of 7 results in a two-dimensional
time-frequency representation, S(7,{2), of the original time
function. By manipulating (la), the STFT can also be ex-
pressed in the frequency domain:

S(r, Q) = e / FWw)G(Q —w)e’™dw.  (1b)

Here F(w) and G(w) are the Fourier transforms of f(¢) and
g(t), respectively. We observe from (1a) and (1b) that the
STFT representation can be obtained through either a moving
window in time g(¢) or a corresponding moving window in
frequency G{w).

We will now introduce the (continuous) wavelet transform
of a time signal f(¢) for our application:

Wf(T,Q):/f(t)r_l/zh(t/T)eJQTdt.

By comparing (1a) and (2a), we see that h(2) is similar to the
window function ¢(t) in the STFT. However, h(t) must satisfy
an additional “admissibility condition” in wavelet theory [5],
viz., h(t = 0) = 0. To satisfy this condition, h(¢) is usually
chosen to be a translated window function with its center at
to. By changing 7, the center of the window function moves
as 7ty and the width of the window is dilated by the scale
factor 7. The ratio between the window width and the window
center (or the Q-factor of the window function) remains fixed
for all time. This is in contrast to the STFT where the window
width is fixed for all time. By properly manipulating (2a),
the wavelet transform can also be carried out on the Fourier
transform F'(w) of the original time signal:

(2a)

Wi(r, Q) = / Flw)r P H(r(w - Q)dw.  (2b)
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Fig. 1. Geometry of the open-ended circular waveguide cavity.

H(w) is the Fourier transform of A(t) and is vsually referred
to as the “mother wavelet.” The operation in (2b) can be
interpreted as the decomposition of the frequency signal F(w)
into a family of shifted and dilated wavelets H(7(w — Q)). It
is important to point out here that the present definition of the
wavelet transform in its time and frequency forms is exactly
opposite to the common definition of the wavelet transform
used in time-series signal analysis [5]. - '

III. TIME-FREQUENCY REPRESENTATION
OF BACKSCATTERING DATA

The time-frequency representation of the backscattering data
from an open-ended cavity is considered. The cavity is an
open-ended circular waveguide with a diameter of 4.445 cm.
A flat conducting termination exists. 60.96 c¢m inside the
waveguide (Fig. 1). To generate the backscattering data, the
radar cross section of this target is first computed in the
frequency domain. We take into account of the interior cavity
contribution using a modal approach [7] and the diffraction
contribution from the front rim of the cavity using the asymp-
totic formula in [8]. It has been previously established that the
backscattering data predicted in this manner agree reasonably
well with experiments. The time-domain response is then
obtained by Fourier transforming the band-limited frequency
data (from 2 to 18 GHz).

Fig. 2(a) shows the time-frequency plot of the backscattering
data at normal incidence (# = 0°) using the STFT. In
performing the STFT, a 2-GHz Kaiser-Bessel window in the
frequency domain is used in equation (1b). Also plotted along
the two axes are the time-domain and the frequency-domain
responses. It is apparent that the scattering features are much
better resolved in the time-frequency domain than in either the
time or the frequency domain alone. Both the nondispersive
rim diffraction and the two mode spectra due to the TEj;
(with cutoff at 3.96 GHz) and the TE, (11.45 GHz) mode can
be clearly identified. The mode spectra are in fact dispersion
curves of the waveguide modes since the phase velocity of
each mode is proportional to the travel time. The noncausal
noise appearing in the time-frequency plot is caused by the
modal approximation used in simulating the backscattering
data. If actual measurement data were used, this noise should
be absent. ‘

Due to the fixed resolution of the STFT, the scattering fea-
tures in Fig. 2(a) are smeared out in the time-frequency plane.
This problem is overcome by using the wavelet transform that
provides a much better representation of the scattering features
in the time-frequency plane, as shown in Fig. 2(b). The wavelet
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Fig. 2. Time-frequency representation of 'backscattering data from an
open-ended cavity under normal incidence. The grayscale plots of intensity are
in decibels with a dynamic range of 40 dB. (a) Short-time: Fourier transform
(STFT) representation. (b) Wavelet transform representation.

transform is implemented using equation (2a) with the aid
of the FFT. The function A(t) is chosen to be a two-sided
Kaiser—Bessel window with a Q-factor of 0.3. The t = 0
reference of h(t) is located midway between the time events
from the rim diffraction and interior contribution (at 7 = 2.05
ns). The variable time resolution of the wavelet transform
allows sharper time resolution to be achieved during the early-
time response and sharper frequency resolution (coarser time
resolution) to be achieved during the late-time response. Thus,
wavelet transform provides good resolution in identifying the
scattering centers and resolving the resonant phenomena of
the target while adequately describing the dispersive scattering
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Time- frequency representation of backscattering data from an open-ended cavity under 45° incidence. The grayscale

plots of intensity are in decibels with a dynamic range of 40 dB. (a) Short-time Four1er transform (STFT) representation. (b)

Wavelet transform representation.

mechanisms in the intermediate-time region. Figs. 3(a) and
3(b) show the time-frequency plots, generated using the STFT
and the wavelet transform, respectively, of the same cavity at
45° incidence. Many more modes are excited by the obliquely
incident wave. Consequently the time domain response is
much more dispersive. By comparing Figs. 3(a) and 3(b), we
find that the wavelet representation again provides a much
sharper resolution of the different scattering mechanisms than
the STFT.
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