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Wavelet Analysis of Backscattering Data

from an Open-Ended Waveguide Cavity
Hao Ling, Member, IEEE, and Hyeongdong Kim, Student Member, IEEE

Abstract— The wavelet analysis technique is applied to an-
alyze the electromagnetic backscattering data from an open-

ended waveguide cavity. Compared to the conventional short-
time Fourier transform, the wavelet transform results in a better

representation of the scattering features in the time-frequency

plane, due to its multiresolution property.

I. INTRODUCTION

T HE electromagnetic energy backscattered from an un-

known target can provide information useful for classify-

ing and identifying the target. This is commonly accomplished

by interpreting the radar echo in either the time or the

frequency domain. For target characteristics which are not im-

mediately apparent in either the time or the frequency domain,

the joint time-frequency representation of the radar echo can

often provide more insight into the scattering mechanisms and,

when properly interpreted, can lead to successful identification

of the target. In a recent paper by Moghaddar and Walton [1],

the joint time-frequency analysis of an open-ended waveguide

cavity was carried out. In that work, both the short-time

Fourier transform (STFT) and the Wigner–Ville distribution

were applied to the broad-band backscattering data from a

dispersive cavity structure to arrive at the time-frequency

representation. Good insights on the scattering mechanisms

were gained from the results. However, the STFT is limited by

its fixed resolution in both the time and the frequency domain.

The Wigner–Ville distribution, although providing good local-

ization of scattering mechanisms, introduces additional cross

terms which leads to “ghosts” in the time-frequency plane.

The theory of wavelets is currently attracting a great deal of

attention in many disciplines of applied science [2]–[5]. In this

letter, the wavelet transform is applied to the backscattering

data from an open-ended waveguide cavity in order to derive

the time-frequency representation of the signal. Contrary to

the conventional STFT that has fixed resolution in both time

and frequency, the wavelet transform, when properly defined,

can provide variable resolution in time and multiresolution in

frequency. Since the early-time radar echo from finite objects

usually consists of sharp peaks [6], very fine time resolution

is needed to resolve the various scattering centers. On the

other hand, since the late-time arrivals are characterized by

resonant ringing, good frequency resolution (or coarse time
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resolution) is needed for isolating the target resonances. In

the intermediate region, dispersive phenomena require good

resolution in both time and frequency. The multiple resolution

property of the wavelet transform is ideally suited for this task.

Consequently, the wavelet representation can provide a better

time-frequency characterization of the backscattering data.

II. SHORT-TIME FOURIER TRANSFORM

AND WAVELET TRANSFORM

The conventional STFT of a time signal ~(t) is defined as

[3], [4]:

/
S(T, Q) = ,f(t)g(t – T)e-jntdt. (la)

It is essentially the Fourier transform operation with the

addition of a time window function g(t). The translation of

the window as a function of T results in a two-dimensional

time-frequency representation, S(T, Cl), of the original time

function. By manipulating (la), the STFT can also be ex-

pressed in the frequency domain:

S(7, 0) = e-jot JF(u)G(fl – w)e~’tidw. (lb)

Here F(w) and G(u) are the Fourier transforms of ~(t) and

g(t), respectively. We observe from (la) and (lb) that the

STFT representation can be obtained through either a moving

window in time g(t) or a corresponding moving window in

frequency G(w).

We will now introduce the (continuous) wavelet

of a time signal ~(t) for our application:

/
~f(T, f)) = f(t) T-1/2 h(t/T)e’n7dt.

transform

(2a)

By comparing (la) and (2a), we see that h(t) is similar to the

window function g(t) in the STFT. However, h(t) must satisfy

an additional “admissibility condition” in wavelet theory [5],

viz., h(t = O) = O. To satisfy this condition, h(t) is usually

chosen to be a translated window function with its center at

to.By changing ~, the center of the window function moves

as rto and the width of the window is dilated by the scale

factor r. The ratio between the window width and the window

center (or the Q-factor of the window function) remains fixed

for all time. This is in contrast to the STFT where the window

width is fixed for all time. By properly manipulating (2a),

the wavelet transform can also be carried out on the Fourier

transform F(w) of the original time signal:

wf(T, Q) =
/

~(w)71/2~(T(W – fl))dw. (2b)

105 1–8207/92$03.00 G 1992 IEEE



LING AND KIM: WAVELET ANALYSIS OF BACKSCATTERING DATA 141

Fiat Conducting
Termpation

Fig. 1. Geometry of theopen-ended circular waveguide cavity,

11(~) is the Fourier transform of h(t) and is usually referred

to as the “mother wavelet.” The operation in (2b) can be

interpreted as the decomposition of the frequency signal F(w)

into a family of shifted and dilated wavelets H(T(w – fl)). It

is important to point out here that the present definition of the

wavelet transform in its time and frequency forms is exactly

opposite to the common definition of the wavelet transform

used in time-series signal analysis [5].

III. TIME-FRE@_JENCY REPRESENTATION

OF BACKSCATTERING DATA

The time-frequency representation of the backscattering data

from an open-ended cavity is considered. The cavity is an

open-ended circular waveguide with a diameter of 4.445 cm.

A flat conducting termination exists 60.96 cm inside the

waveguide (Fig. 1). To generate the backscattering data, the

radar cross section of this target is first computed in the

frequency domain. We take into account of the interior cavity

contribution using a modaJ approach [7] and the diffraction

contribution from the front rim of the cavity using the asymp-

totic formula in [8]. It has been previously established that the

backscattering data predicted in this manner agree reasonably

well with experiments. The time-domain response is then

obtained by Fourier transforming the band-limited frequency

data (from 2 to 18 GHz).

Fig. 2(a) shows the time-frequency plot of the backscattering

data at normal incidence (d = 0°) using the STFT. In

performing the STFT, a 2-GHz Kaiser–Bessel window in the

frequency domain is used in equation (lb). Also plotted along

the two axes are the time-domain and the frequency-domain

responses, It is apparent that the scattering features are much

better resolved in the time-frequency domain than in either the

time or the frequency domain alone. Both the nondispersive

rim diffraction and the two mode spectra due to the TE11

(with cutoff at 3.96 GHz) and the TE12 (1 1.45 GHz) mode can

be clearly identified. The mode spectra are in fact dispersion

curves of the waveguide modes since the phase velocity of

each mode is proportional to the travel time. The noncausal

noise appearing in the time-frequency plot is caused by the

modal approximation used in simulating the backscattering

data. If actual measurement data were used, this noise should
be absent.

Due to the fixed resolution of the STFT, the scattering fea-

tures in Fig. 2(a) are smeared out in the time-frequency plane.

This problem is overcome by using the wavelet transform that

provides a much better representation of the scattering features
in the time-frequency plane, as shown in Fig. 2(b). The wavelet
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Fig. 2. Time-frequency representation of backscattering data from an

open-ended cavity under normal incidence, The grayscale plots of intensity are
in decibels with a dynamic range of 40 dB. (a) Short-time IFourier transform

(STFT) representation. (b) Wavelet transform representation.

transform is implemented using equation (2a) with the aid

of the FFT. The function h(t) is chosen to be a two-sided

Kaiser-Bessel window with a Q-factor of 0.3. The t = O

reference of h(t) is located midway between the time events

from the rim diffraction and interior contribution (at T = 2.05

ns). The variable time resolution of the wavelet transform

allows sharper time resolution to be achieved during the early-

time response and sharper frequency resolution (coarser time

resolution) to be achieved during the late-time response. Thus,

wavelet transform provides good resolution in identifying the

scattering centers and resolving the resonant phenomena of
the target while adequately describing the dispersive scattering
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Fig. 3. Time-frequency representation of backscattering data from an open-ended cavity under 45° incidence. The grayscale
plots of intensity are in decibels with a dynamic range of 40 dB. (a) Short-time Fourier transform (STFT) representation. (b)

Wavelet transform representation.

mechanisms in the intermediate-time region. Figs. 3(a) and

3(b) show the time-frequency plots, generated using the STFT

and the wavelet transform, respectively, of the same cavity at

45° incidence. Many more modes are excited by the obliquely

incident wave. Consequently the time domain response is

much more dispersive. By comparing Figs. 3(a) and 3(b), we

find that the wavelet representation again provides a much

sharper resolution of the different scattering mechanisms than

the STFT.
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